66 research outputs found

    Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord

    Get PDF
    In a previous report we showed that intravenous infusion of bone marrow-derived mesenchymal stem cells (MSCs) improved functional recovery after contusive spinal cord injury (SCI) in the non-immunosuppressed rat, although the MSCs themselves were not detected at the spinal cord injury (SCI) site [1]. Rather, the MSCs lodged transiently in the lungs for about two days post-infusion. Preliminary studies and a recent report [2] suggest that the effects of intravenous (IV) infusion of MSCs could be mimicked by IV infusion of exosomes isolated from conditioned media of MSC cultures (MSCexos). In this study, we assessed the possible mechanism of MSCexos action on SCI by investigating the tissue distribution and cellular targeting of DiR fluorescent labeled MSCexos at 3 hours and 24 hours after IV infusion in rats with SCI. The IV delivered MSCexos were detected in contused regions of the spinal cord, but not in the noninjured region of the spinal cord, and were also detected in the spleen, which was notably reduced in weight in the SCI rat, compared to control animals. DiR "hotspots" were specifically associated with CD206-expressing M2 macrophages in the spinal cord and this was confirmed by co-localization with anti-CD63 antibodies labeling a tetraspanin characteristically expressed on exosomes. Our findings that MSCexos specifically target M2-type macrophages at the site of SCI, support the idea that extracellular vesicles, released by MSCs, may mediate at least some of the therapeutic effects of IV MSC administration

    Cutaneous Immunization Rapidly Activates Liver Invariant Vα14 NKT Cells Stimulating B-1 B Cells to Initiate T Cell Recruitment for Elicitation of Contact Sensitivity

    Get PDF
    T cell recruitment to elicit contact sensitivity (CS) requires a CS-initiating process mediated by B-1 cells that produce IgM, which activates complement to promote T cell passage into the tissues. We now show that Vα14i NKT cells induce B-1 cell activation likely by releasing IL-4 early postimmunization. The CS initiation process is absent in Jα18−/− and CD1d−/− NKT cell–deficient mice and is reconstituted by populations enriched for Vα14i NKT cells. Transfers are not effective if cells are derived from IL-4−/− mice. Staining with specific tetramers directly showed that hepatic Vα14i NKT cells increase by 30 min and nearly double by 2 h postimmunization. Transfer of immune B-1 cells also reconstitutes CS responses in NKT cell–deficient mice. The B-1 cells act downstream of the Vα14i NKT cells to restore CS initiation. In addition, IL-4 given systemically to Jα18−/− or CD1d−/− NKT cell–deficient mice reconstitutes elicitation of CS. Further, splenocytes from immune Jα18−/− mice produce less antigen (Ag)-specific IgM antibodies compared with sensitized WT mice. Together these findings indicate that very early after skin immunization Vα14i NKT cells are stimulated to produce IL-4, which activates B-1 cells to produce Ag-specific IgM, subsequently needed to recruit effector T cells for elicitation of CS responses

    Vesiclepedia: A compendium for extracellular vesicles with continuous community annotation

    Get PDF
    Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein) identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field

    Exosome Carrier Effects; Resistance to Digestion in Phagolysosomes May Assist Transfers to Targeted Cells; II Transfers of miRNAs Are Better Analyzed via Systems Approach as They Do Not Fit Conventional Reductionist Stoichiometric Concepts

    No full text
    Carrier effects of extracellular vesicles (EV) like exosomes refer to properties of the vesicles that contribute to the transferred biologic effects of their contents to targeted cells. This can pertain to ingested small amounts of xenogeneic plant miRNAs and oral administration of immunosuppressive exosomes. The exosomes contribute carrier effects on transfers of miRNAs by contributing both to the delivery and the subsequent functional intracellular outcomes. This is in contrast to current quantitative canonical rules that dictate just the minimum copies of a miRNA for functional effects, and thus successful transfers, independent of the EV carrier effects. Thus, we argue here that transfers by non-canonical minute quantities of miRNAs must consider the EV carrier effects of functional low levels of exosome transferred miRNA that may not fit conventional reductionist stoichiometric concepts. Accordingly, we have examined traditional stoichiometry vs. systems biology that may be more appropriate for delivered exosome functional responses. Exosome carrier properties discussed include; their required surface activating interactions with targeted cells, potential alternate targets beyond mRNAs, like reaching a threshold, three dimensional aspects of the RNAs, added EV kinetic dynamic aspects making transfers four dimensional, and unique intracellular release from EV that resist intracellular digestion in phagolysosomes. Together these EV carrier considerations might allow systems analysis. This can then result in a more appropriate understanding of transferred exosome carrier-assisted functional transfers. A plea is made that the miRNA expert community, in collaboration with exosome experts, perform new experiments on molecular and quantitative miRNA functional effects in systems that include EVs, like variation in EV type and surface constituents, delivery, dose and time to hopefully create more appropriate and truly current canonical concepts of the consequent miRNA functional transfers by EVs like exosomes
    • …
    corecore